
Optimizing Hypre 
Communication with Node 

Aware Parallelism
Gerald Collom

Amanda Bienz

UNM Dept. of Computer Science

Ruipeng Li

Lawrence Livermore National Lab



Hypre Communication: Matrix Operations

▪ Hypre: Industry-
leading multigrid solver for 
linear systems

▪ Communication in Hypre:

— Parallel Sparse Matrix-Vector 
(SpMV) and Matrix-Matrix 
Multiplication

— Irregular

https://github.com/hypre-space/hypre/

https://github.com/hypre-space/hypre/


Hypre Code Example: 
Persistent Communication for SpMV

In file: src/parcsr_mv/par_csr_communication.c

In method: hypre_ParCSRPersistentCommHandleCreate

This loop initializes each receive of vec_len data starting at vec_start into recv_buff. The 

method hypre_MPI_Recv_init is a simple wrapper for MPI_Recv_init.



Neighborhood Collectives
Create graph from communication pattern:

Do single 

exchange 

based on 

graph:

Persistent 

alternative:

Why?: replace several separate send/recv calls and provide communication metadata to MPI so MPI 

can optimize communication itself



Implementing Neighborhood Collectives in Hypre

When communication is initialized, create communication graph:

Instead of calling Recv_init/Send_init in a loop:

— store the size for each send/recv message

— After getting all send/recv sizes call neighborhood collective once



Performance Cost of Neighborhood Collective

Data generated on Lassen with problem size of 100^3 per process using IJ driver. The 
neighborhood collective adds a ~1% overhead that vanishes by 64 processes.

5

6

7

8

9

10

11

12

13

14

16 32 48 64 80 96 112 128

S
o
lv

e
 W

a
ll 

C
lo

c
k
 T

im
e
 (

S
e
c
o
n
d
s
)

Number of Processes

Weak Scaling Comparison of Hypre using Neighborhood Collective

Standard Hypre Time

Time with collective

Takeaway: Neighborhood collective 
costs little overhead to Hypre but 
allows for optimization behind MPI



Node-Aware Optimization
Node-aware MPI: aggregate on-node before sending 

across nodes

Standard MPI: send data directly to process 

regardless of which node it is running on

Node-Aware Parallel SpMV[1]:
—Reduces number and size of costly internode messages

Implementation in Hypre (WIP):
Used library that provides optimized Neighbor_alltoallv created by Amanda Bienz, included when building Hypre
Extended interface requires additional changes to Hypre currently being debugged



Future and Related Work 
▪ Persistent and Partitioned MPI in Comb:

—Partitioned MPI

—Comb: Regular halo exchange communication benchmark

—Initial performance comparison against Comb with standard MPI suggested no significant overhead to persistent MPI in Comb

—WIP: Partitioned MPI working in Comb for single thread case, debugging implementation of partitioned MPI + OpenMP

—Next steps: Performance analysis of partitioned MPI in Comb and GPU-triggered partitioned MPI, remove sync with CPU for 
communication

▪ Performance Comparison with middle-ground Neighbor_alltoallv optimization which has an interface identical 
to standard MPI
— Does not require additional code changes, only switching to neighborhood collective

— cannot benefit from the full node-aware SpMV optimization

▪ Inverse Neighbor_alltoallv interface, an operation required by AMG process. Currently creating an additional 
inverted graph

1. Amanda Bienz, William D. Gropp, & Luke N. Olson (2016). TAPSpMV: Topology-Aware Parallel Sparse Matrix Vector Multiplication.

CoRR, abs/1612.08060.


