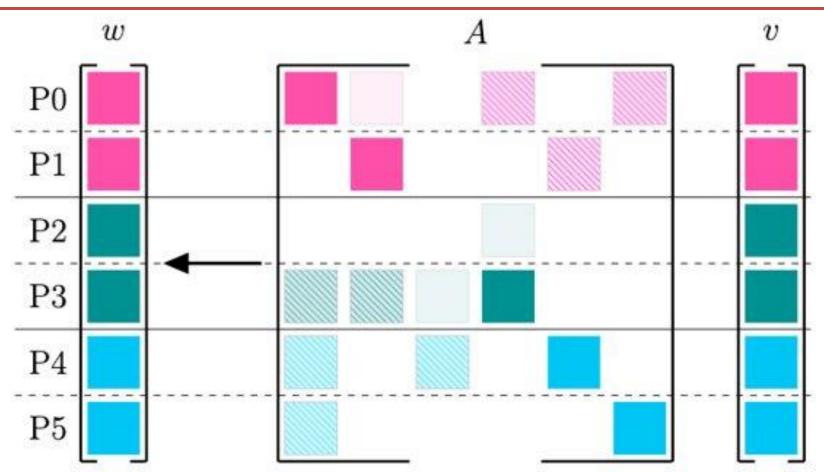
Optimizing Hypre Communication with Node Aware Parallelism

Gerald Collom Amanda Bienz UNM Dept. of Computer Science

Ruipeng Li Lawrence Livermore National Lab

Center for Understandable, Performant Exascale Communication Systems

Hypre Communication: Matrix Operations


- Hypre: Industryleading multigrid solver for linear systems
- Communication in Hypre:
 - Parallel Sparse Matrix-Vector (SpMV) and Matrix-Matrix Multiplication
 - Irregular

CUP

FCS

https://github.com/hypre-space/hypre/

Hypre Code Example: Persistent Communication for SpMV

In file: src/parcsr_mv/par_csr_communication.c In method: hypre_ParCSRPersistentCommHandleCreate

80	<pre>for (i = 0; i < num_recvs; ++i)</pre>
81	{
82	<pre>HYPRE_Int ip = hypre_ParCSRCommPkgRecvProc(comm_pkg, i);</pre>
83	<pre>HYPRE_Int vec_start = hypre_ParCSRCommPkgRecvVecStart(comm_pkg, i);</pre>
84	<pre>HYPRE_Int vec_len = hypre_ParCSRCommPkgRecvVecStart(comm_pkg, i + 1) - vec_start;</pre>
85	<pre>hypre_MPI_Recv_init((HYPRE_Complex *)recv_buff + vec_start, vec_len, HYPRE_MPI_COMPLEX,</pre>
86	ip, 0, comm, requests + i);
87	}

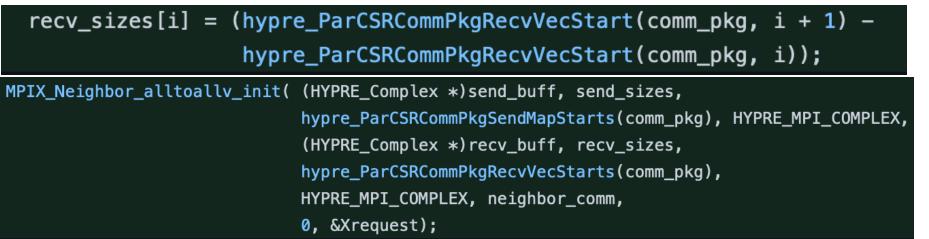
This loop initializes each receive of vec_len data starting at vec_start into recv_buff. The method hypre_MPI_Recv_init is a simple wrapper for MPI_Recv_init.

Neighborhood Collectives

Create graph from communication pattern:

	_Dist_graph_create_adjacent(MPI_Comm comm_old, int indegree, const int sources[], onst int sourceweights[], int outdegree, const int destinations[], const int destweights[], MPI_Info info, int reorder, MPI_Comm *comm_dist_graph)
Do single	<pre>int MPI_Neighbor_alltoallv(const void *sendbuf, const int sendcounts[],</pre>
exchange	<pre>const int sdispls[], MPI_Datatype sendtype,</pre>
based on	<pre>void *recvbuf, const int recvcounts[],</pre>
graph:	<pre>const int rdispls[], MPI_Datatype recvtype, MPI_Comm comm)</pre>
	<pre>int MPI_Neighbor_alltoallv_init(const void *sendbuf, const int sendcounts[],</pre>
Persistent	<pre>const int sdispls[], MPI_Datatype sendtype,</pre>
alternative:	<pre>void *recvbuf, const int recvcounts[],</pre>
allemative.	<pre>const int rdispls[], MPI_Datatype recvtype, MPI_Comm comm,</pre>
	<pre>MPI_Info info, MPI_Request *request)</pre>
$\lambda \Lambda / _{\Delta \lambda} = 0$	a construction of the stand of the stand of the standard structure is at the standard stand

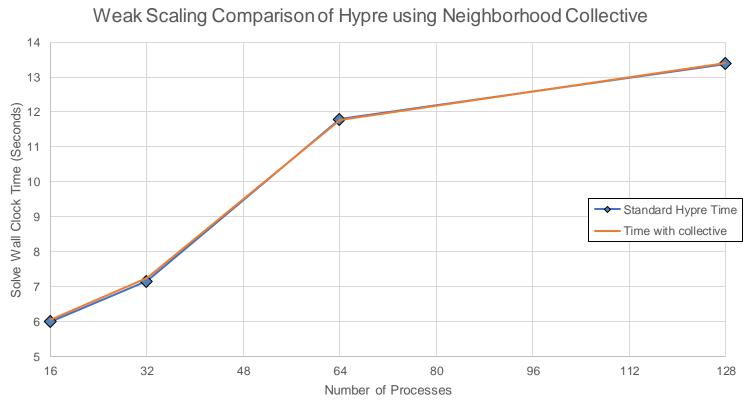
Why?: replace several separate send/recv calls and provide communication metadata to MPI so MPI can optimize communication itself



Implementing Neighborhood Collectives in Hypre

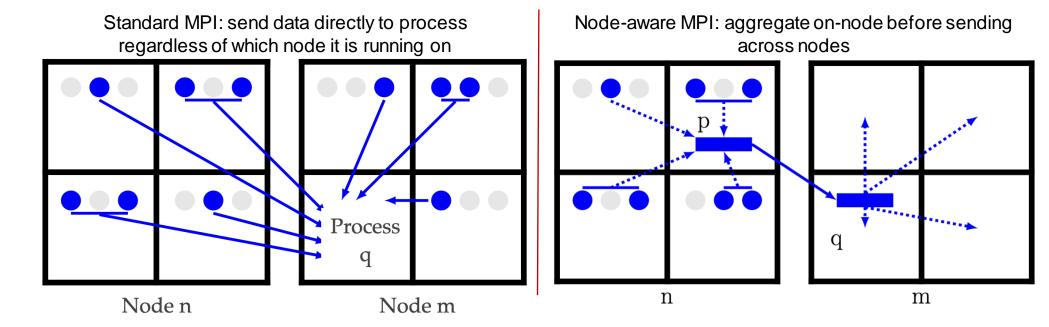
When communication is initialized, create communication graph:

Instead of calling Recv_init/Send_init in a loop:


- store the size for each send/recv message
- After getting all send/recv sizes call neighborhood collective once

Performance Cost of Neighborhood Collective

Takeaway: Neighborhood collective costs little overhead to Hypre but allows for optimization behind MPI


Data generated on Lassen with problem size of 100^3 per process using IJ driver. The neighborhood collective adds a ~1% overhead that vanishes by 64 processes.

CUP

FCS

Node-Aware Optimization

Node-Aware Parallel SpMV[1]:

Reduces number and size of costly internode messages

Implementation in Hypre (WIP):

Used library that provides optimized Neighbor_alltoallv created by Amanda Bienz, included when building Hypre Extended interface requires additional changes to Hypre currently being debugged

Future and Related Work

- Persistent and Partitioned MPI in Comb:
 - -Partitioned MPI
 - -Comb: Regular halo exchange communication benchmark
 - -Initial performance comparison against Comb with standard MPI suggested no significant overhead to persistent MPI in Comb
 - -WIP: Partitioned MPI working in Comb for single thread case, debugging implementation of partitioned MPI + OpenMP
 - -Next steps: Performance analysis of partitioned MPI in Comb and GPU-triggered partitioned MPI, remove sync with CPU for communication
- Performance Comparison with middle-ground Neighbor_alltoallv optimization which has an interface identical to standard MPI
 - Does not require additional code changes, only switching to neighborhood collective
 - cannot benefit from the full node-aware SpMV optimization
- Inverse Neighbor_alltoallv interface, an operation required by AMG process. Currently creating an additional inverted graph
 - 1. Amanda Bienz, William D. Gropp, & Luke N. Olson (2016). TAPSpMV: Topology-Aware Parallel Sparse Matrix Vector Multiplication. CoRR, abs/1612.08060.

